王乃华

作者: 时间:2020-02-27 点击数:

 


 
 
  王乃华     男,   1973   年生,山东聊城人,工学博士,教授,博士生导师,副院长,入选教育部“新世纪人才支持计划”。欧洲核子研究中心(   CERN   )高级客座研究员。主持国家、省部级课题   10   余项,国家“   973   计划”和“阿尔法磁谱仪(   AMS   )热控制系统”主要研究人员。获得山东省科技进步奖   1   项。出版著作   2   部,发表论文   40   余篇。长期从事热科学研究,主要研究领域为:强化传热与节能技术、空间设备热控制系统、核反应堆热工水力学等。

科研项目:

1) 山东省科技成果转化重大专项,阿尔法磁谱仪,1000万元,项目负责人

2) 国家973计划:高能耗行业典型换热设备节能的先进理论与方法,2600万元,主要学术骨干

3) 国家973计划:工业余热利用的换热设备多目标函数设计新理论与新方法,632万元,主要学术骨干

4) 教育部新世纪优秀人才支持计划,环路热管工作特性研究,50万元,项目负责人

5) 山东省优秀中青年科学家奖励基金,镍基渗层管表面珠状凝结换热研究,6万元,项目负责人

6) 山东省自然科学基金,大尺度受限空间沸腾换热研究,15万元,项目负责人

7) 企业委托课题,非能动换热系统设计工具开发项目,项目负责人

8) 企业委托课题,非能动安全壳冷却系统关键技术及系统研发,项目负责人

9) 企业委托课题,乏燃料干法贮存热工分析平台,项目负责人

10)企业委托课题,非能动安全壳冷却系统关键热工参数研究及系统设计程序开发,项目负责人

11)企业委托课题,湍流渗透及冷热交混现象研究实验和主管道RHR吸入漩涡现象研究,项目负责人

12)企业委托课题,ACPR50s控制系统及热工参数不确定性分析,项目负责人

13)企业委托课题,超临界水氧化反应器数值模拟,项目负责人

14)企业委托课题,海洋条件对CHF影响数值模拟,项目负责人

15)企业委托课题,新型两相流热换热系统及关键部件设计,项目负责人

16)企业委托课题,OTSG样机流场CFD数值计算不确定性分析,项目负责人

科技奖励:

1) 教育部新世纪优秀人才,2011

2) 等离子体表面改性凝汽器,山东省科技进步奖二等奖,第一完成人,2007

发明专利:

1) 重力回路热管系统运行温度的优化方法及系统设计方法,ZL 2017 1 0012798.5

2) 一种管式超临界水氧化反应器, ZL 2018 1 1548901.9

3) 一种具有多吹灰口的水泥回转窑余热利用换热器, ZL 2014 1 0413058.9

4) 一种具有多个方向吹灰的余热利用换热器, ZL 2014 1 0412142.9

5) 管束菱形排列的水泥回转窑余热利用换热器, ZL 2014 1 0413056.X

6) 管束凸起密度不同的水泥回转窑余热利用换热器, ZL 2014 1 0412992.9

7) 夹角不同的菱形水泥回转窑余热利用换热器, ZL 2014 1 0412603.2

8) 一种设置凸起的水泥回转窑余热利用换热器, ZL 2014 1 0162992.8

发表论文:

[1] Keyuan Zhang, Jian Hu, Zezhao Nan, Zengqiao Chen, Naihua Wang*, Experimental study of heat transfer characteristics on condensation in the presence of NCG through thermal resistance analysis, Progress in Nuclear Energy, 131103591, 2021SCIEI收录,IF 1.596

https://doi.org/10.1016/j.pnucene.2020.103591.

[2] Yaru Li, Weicai Li, Lin Wan, Yanyan Xi, Naihua Wang*Numerical simulation of boiling two-phase flow in the subchannel under static state and rolling motion, International Journal of Heat and Mass Transfer, 163120416, 2020SCIEI收录,IF 4.947

https://doi.org/10.1016/j.ijheatmasstransfer.2020.120416.

[3] Yin, X., Tian, Y., Zhou, D., & Wang, N.*, Numerical study of flow boiling in an intermediate-scale vertical tube under low heat flux. Applied Thermal Engineering, 739-747, 2019 .(SCIEI收录,IF 4.026)

[4] Ji, C., Cheng, L., Wang, N.*, & Liu, Z., Experimental investigation on high-pressure high-temperature spray flash evaporation and the characteristic Jakob number. Experimental Thermal and Fluid Science, 94-100, 2019. (SCIEI收录,IF 3.493)

[5] WANG, N. , et al. Properties of Cosmic Helium Isotopes Measured by the Alpha Magnetic Spectrometer. Physical Review Letters, 123, 181102, 2019. (SCIEI收录,IF 9.227)

[6] WANG, N. , et al. Towards Understanding the Origin of Cosmic-Ray Positrons. Physical Review Letters, 122, 041102, 2019. (SCIEI收录,IF 9.227)

[7] WANG, N. , et al. Towards Understanding the Origin of Cosmic-Ray Electrons. Physical Review Letters, 122, 101101, 2019. (SCIEI收录,IF 9.227)

[8] Y. S. Tian, Z. Q. Chen, N. H. Wang*, Z. Cui, and L. Cheng, “Experimental investigations on pool boiling on a vertical tube in the confined and unconfined spaces,” Applied Thermal Engineering, vol. 133, pp. 107–116, 2018. (SCIEI收录,IF 4.026)

[9] Y. S. Tian, Z. Q. Chen, N. H. Wang*, D. Zhou, and L. Cheng, “Numerical and experimental investigation of pool boiling on a vertical tube in a confined space,” Intnational Journal  of Heat and Mass Transfer, vol. 122, pp. 1239–1254, 2018. (SCIEI收录,IF 4.346)

[10] WANG, N., et al. Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 120, 021101, 2018. (SCIEI收录,IF 8.839)

[11] WANG, N., et al. Observation of Fine Time Structures in the Cosmic Proton and Helium Fluxes with the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 121, 051101, 2018. (SCIEI收录,IF 8.839)

[12] WANG, N., et al. Observation of Complex Time Structures in the Cosmic-Ray Electron and Positron Fluxes with the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 121, 051102, 2018. (SCIEI收录,IF 8.839)

[13] WANG, N, et al. Precision Measurement of Cosmic-Ray Nitrogen and its Primary and Secondary Components with the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 121, 051103, 2018 (SCIEI收录,IF 8.839)

[14] WANG, N., et al. Observation of the Identical Rigidity Dependence of He, C, and O Cosmic Rays at High Rigidities by the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 119, 251101, 2017. (SCIEI收录,IF 8.462)

[15] Yongsheng Tian, Keyuan Zhang, Naihua Wang*, et al. Numerical study of pool boiling heat transfer in a large-scale confined space[J], Applied Thermal Engineering. DOI: 10.1016/j.applthermaleng.2017.02.110 (SCI收录)

[16] Wang N, Guo J, Gu M, et al. Simulation of particle deposition on the tube in ash-laden flow using the lattice Boltzmann method[J]. International Communications in Heat and Mass Transfer, 2016: 31-38. SCI收录)

[17] N. H. WANG et al. Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station[J], Physical Review Letters, 2016, 117(231102). (共同第一作者SCI收录)

[18] N. H. WANG et al. Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station[J], Physical Review Letters, 2016, 117(9):091103. (共同第一作者SCI收录)

[19] Shao W, Cui Z, Wang N, et al. Numerical simulation of heat transfer process in cement grate cooler based on dynamic mesh technique[J]. Science China-technological Sciences, 2016, 59(7): 1065-1070. (SCI收录)

[20] 季璨, 王乃华, 崔峥等. 高温高压喷雾闪蒸的蒸发特性[J]. 化工学报, 2016, 5(5):1771-1777. EI收录)

[21] 季璨, 王乃华, 崔峥等. Jakob数在高温高压闪蒸过程中的作用及影响[J]. 化工学报, 2016, 67(10):4153-4159. EI收录)

[22] N. H. WANG et al. Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station[J]. Physical Review Letters, 2015, 115(21): 211101-211101. (共同第一作者SCI收录)

[23] N. H. WANG et al. Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station[J]. Physical Review Letters, 2015, 114(17). (共同第一作者SCI收录)

[24] Wang N, Cui Z, Burger J, et al. Transient behaviors of loop heat pipes for alpha magnetic spectrometer cryocoolers[J]. Applied Thermal Engineering, 2014, 68(1): 1-9. SCI收录)

[25] Wang N, Cui Z, Luo F, et al. Temperature Oscillation of Loop Heat Pipe for AMS Cryocooler[J]. Energy Procedia, 2014: 2750-2754.EI收录)

[26] Naihua WANG, Zheng CUI, Lin CHENG, Startup Characteristic of Loop Heat Pipes for Alpha Magnetic Spectrometer Cryocoolers, 15th International Heat Transfer Conference, IHTC-15, August 10-15, 2014, Kyoto, Japan ISTP收录)

[27] 黄洁, 王乃华, 程林. 环路热管启动特性模拟. 化工学报, 2014, 65(S1):297-302.EI收录)

[28] CUI Z, WANG N, WANG K, et al. Effects of the thermal environment on the thermal control system of AMS. Science China-technological Sciences, 2014, 58(3): 526-533. SCI收录)

[29] Wang N, Joseph B, Cheng L, et al. Design and experimental study of thermal control system for AMS cryocoolers[J]. Chinese Science Bulletin, 2013, 58(10): 1200-1204. SCI收录)

[30] 王乃华, Joseph Burger, 程林. 阿尔法磁谱仪低温冷却器热控制系统设计及实验[J]. 科学通报, 2013(Z1):490-494.

[31] N. H. WANG et al.  First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350GeV, Physical Review Letters, 2013110(141102) (共同第一作者SCI收录)

[32] WANG Naihua, YANG Kaimin, XIN Gongming, et al. Simulation of Two Phase Flow and Heat Transfer in a Heat Pipe, International Conference on Applied Energy, ICAE 2013, Jul 1-4, 2013, Pretoria, South Africa

[33] Cui Z, Luo F, Wang N, et al. Thermal control system of Alpha Magnetic Spectrometer[J]. Science China-technological Sciences, 2013, 56(10): 2553-2562. SCI收录)

[34] 崔峥, 王乃华, 程林. AMS低温冷却系统环路热管设计与测试[J]. 工程热物理学报, 2013(8):1497-1501.EI收录)

[35] Yang K M, Wang N H, Jiang C H, et al. Study on Heat Transfer Characteristics of Heat Pipe with Axial “Ω”-Shaped Microgrooves[J]. Advanced Materials Research, 2012, 580:297-300.EI收录)

[36] Yang K M, Wang N H, Jiang C H, et al. Experimental Research and Simulation in a Thermosyphon[J]. Advanced Materials Research, 2012, 580:441-444.EI收录)

[37] Yang K M, Wang N H, Jiang C H, et al. An Investigation of the Thermal Performance of a Novel Axial Grooved Heat Pipe[J]. Advanced Materials Research, 2012, 580:223-226.EI收录)

[38] Zhang X, Wang N. Experimental Study on Fast Suspension Bed Flue Gas Desulfurization[J]. Energy Procedia, 2012: 1665-1670.EI收录)

[39] Zhang X, Wang N. Effect of Humidification Water on Semi-dry Flue Gas Desulfurization[J]. Energy Procedia, 2012: 1659-1664.EI收录)

[40] 辛公明, 杜文静, 王乃华. 国际空间站上阿尔法磁谱仪电子设备热系统的研究与设计[J]. 科学通报, 2012(5):382-389.

[41] Wang N, Burger J, Luo F, et al. Operation characteristics of AMS-02 loop heat pipe with bypass valve[J]. Science China-technological Sciences, 2011, 54(7): 1813-1819. SCI收录)

[42] 王乃华, Joseph Burger, 罗峰等. 阿尔法磁谱仪中环路热管旁路阀的工作特性研究[J]. 中国科学:技术科学, 2011(10):1353-1358.

[43] Wang N, Teng B. Modeling of SO2 removal in fabric filter[J]. Fuel Processing Technology, 2009, 90(5): 636-642. SCI收录)

 

    教师主页:http://faculty.sdu.edu.cn/wangnaihua 联系方式wnh@sdu.edu.cn


Copyright © 2019-2020    版权所有:山东大学高等技术研究院  地址:山东省济南市经十路17923号